If the square of a side of any triangle is equal to the sum of the squares of other two sides, the angle between the latter two sides is a right angle.

Let in ΔABC, AB2 = AC2 + BC2
It is required to prove that ∠C is a right angle.

Construction:Draw a triangle ΔDEF so that ∠F = 1 right angle.
EF = BC and DF = AC.

Proof:DE2 = EF2 + DF2 [Since in ΔDEF, ∠F is aright angle]
       = BC2 + AC2 = AB2
∴ DE = AB

Now, in ΔABC and ΔDEF , BC = EF, AC = DF and AB = DE. [supposition]
∴ ΔABC ≅ ΔDEF; ∴ ∠C = ∠F
∴ ∠F =1 right angle.
∴ ∠C= 1 right angle. (Proved)

Digital STUDY Center

Digital Study Center offers an effective and amazing learning platform for keen learn students in the world. We identify the needs and demands of the keen learn students which is why we stand out unique in the crowd.

Post A Comment:


Dear readers,
Your feedback is always appreciated. We will reply to your queries within 24hrs. Before writing your comments, please read the following instructions attentively:

1. Please comments in English. We accept only English comments.

2. Please do not Spam. All spammed comments will be deleted as soon as pobile, after review.

3. Please do not Add Links with your comments as they will not be published.

4. If We can be of assistance, please do not hesitate to contact us.